

NORTHBROOKS SECONDARY SCHOOL End-of-Year Examination 2021 Secondary 3 Express

CANDIDATE NAME		
CLASS		REGISTER NUMBER
MATHEMATIC	:S	4048/01
Paper 1		4 October 2021
Candidates answ	er on the Question Paper.	1 hour 30 minutes

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all the questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 60.

			,		FOF	EXA	MINEF	r'S US	E				
Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	
													60

DO NOT TURN THE PAGE UNTIL YOU ARE TOLD TO DO SO.

This document consists of 12 printed pages.

Setter: Wendy Lee

Mathematical Formulae

Compound interest

Total amount =
$$P \left(1 + \frac{r}{100} \right)^n$$

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle $ABC = \frac{1}{2}ab \sin C$

Arc length $= r\theta$, where θ is in radians

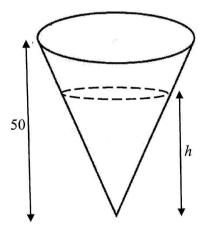
Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics


$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

1 The sine of an angle is 0.8510. Give two possible values for the angle.

Answer				or		••••	[2]
--------	--	--	--	----	--	------	-----

2 The diagram shows a cone of height 50 cm.

The volume of the liquid in the cone is half the volume of the cone. Calculate the depth, h centimetres, of the liquid.

Answer cm [2]

2	C - 1	$(2x-4)^{2}$	2 01
3	Solve	(1.x-4)	$= x_1$

Answer	\boldsymbol{x}	=		•											or													[3	3	
--------	------------------	---	--	---	--	--	--	--	--	--	--	--	--	--	----	--	--	--	--	--	--	--	--	--	--	--	--	----	---	--

4 Viknes received 12 pieces of \$10 and \$5 notes from his sister.

If the total value of all the notes is less than \$95, what is the maximum number of \$10 notes that he has?

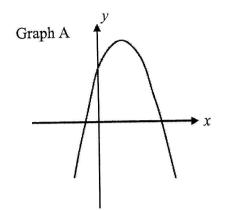
Answer [4]

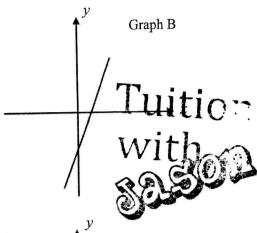
5 Solve the inequalities	$0 \le 3(1-2x)$	< x + 1.
--------------------------	-----------------	----------

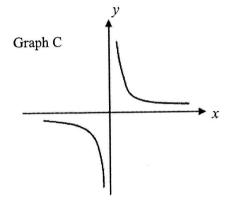
Answer		•	•	•	•	•	•	•	•					•						3		
																					-	

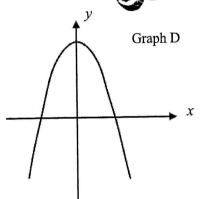
6 The table shows the population of Singapore and of her neighbouring countries in year 2021.

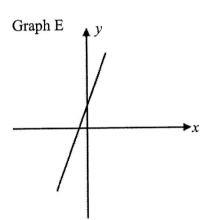
Countries	Population
Thailand	6.963×10 ⁷
Malaysia	3.195×10 ⁷
Indonesia	2.706×10 ⁸
Singapore	5 902 000

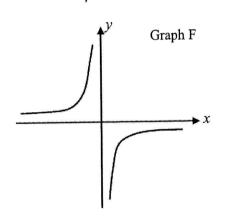

(a) How many more people lived in Thailand than in Singapore? Give your answer in standard form.


Answer[2]


(b) Calculate the population in Malaysia as a percentage of the population in Indonesia.


Answer % [2]


7



Select the graph that corresponds to each of the following equations.

(a) y = 2x - 5.

Answer Graph[1]

(b) $y = -x^2 + 5$.

Answer Graph [1]

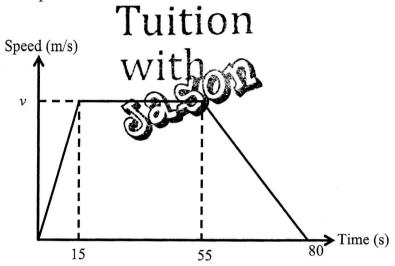
(c) $y = \frac{7}{x}$.

Answer Graph[1]

(d) $y = -x^2 + 4x + 3$.

Answer Graph[1]

8


The e	equation of line <i>l</i> is $6x + 2y = 7$.	
A is th	the point $(2, -3)$ and B is the point $(3, -3)$	3, 5).
(a)	State the gradient of line <i>l</i> .	
		Answer[1]
(b)	Does point A lie on line l ? Show ye	our calculations clearly.
	Answer	
		[2]
(c)	Another line n has the same gradier	Int as line l and passes through point B .
(0)	Find the equation of line n .	it as time t and passes unough point b.
	•	
		<i>Answer</i> [3]
(d)	Find the length of the line AB.	
		<i>Answer</i> [2]

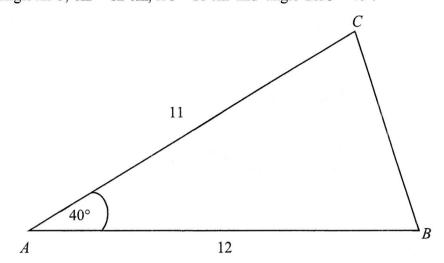
9 The diagram shows the speed-time graph of a particle.

It accelerated uniformly from rest at 4.5 m/s² for 15 seconds to reach a speed of v m/s.

The particle then continues at this speed for 40 seconds before slowing down.

It comes to a stop at 80 seconds.

(a) Calculate the speed, v m/s, of the particle.


Answer	1,	=													[2	7	ı
Answer	v	_					 		 			 			1	-	ı

(b) James claims that 71 seconds is required for the particle to cover a distance of 4 km.

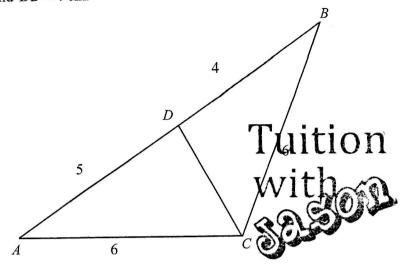
Do you agree with James? Show your calculations clearly.

Answer		•••••		 	• • • • •	• • • •	• • • • •	• • • • •		••••	• • • •		• • • •	••••	 	• • • •	 ••••	
	•••••		• • • • •	 	• • • • •	• • • • •			• • • •	• • • •		••••	••••		 	• • • •	 	
				 											 		 	. [3]

10 In triangle ABC, AB = 12 cm, AC = 11 cm and angle $BAC = 40^{\circ}$.

Calculate

(a) the area of triangle ABC,


Answer				•																					cm^2	[2]	
--------	--	--	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--------	-----	--

(b) the length of BC,

(c) the perpendicular distance from A to BC.

Answer									•		•	•					•	•		•					cm	[2	2]	
--------	--	--	--	--	--	--	--	--	---	--	---	---	--	--	--	--	---	---	--	---	--	--	--	--	----	----	----	--

11 Triangle ABC is an isosceles triangle with AC = BC = 6 cm. D is on AB such that AD = 5 cm and DB = 4 cm.

(a) Show that triangle ABC is similar to triangle BCD.

[2]

(b) State the length of DC.

Answer cm [1]

(c) Find $\frac{\text{area of } \Delta ABC}{\text{area of } \Delta BCD}$.

Answer [2]

(d) Find $\frac{\text{area of } \Delta BCD}{\text{area of } \Delta ADC}$.

Answer[1]

12 (a) Express $x^2 - 3x - 2$ in the form $(x - q)^2 + p$.

Answer	•															[2	1

(b) Sketch the graph of $y = x^2 - 3x - 2$ on the axes below. Indicate clearly the values where the graph crosses the x-axis and the y-axis.

(c) Write down the coordinates of the minimum point of the graph of $y = x^2 - 3x - 2$.

[2]

(d) Write down the equation of the line of symmetry for the graph of $y = x^2 - 3x - 2$.

								000	
13	(a)	Given	that	2^a	= 5,	find	the	value	of

(i) 8^a ,

Answer [2]

(ii) 2^{1-a} .

Answer [2]

(b) Solve the equation $\sqrt{7^x} = \frac{1}{343}$.

NORTHBROOKS SECONDARY SCHOOL End-of-Year Examination 2021 Secondary 3 Express

CANDIDATE NAME	
CLASS	REGISTER NUMBER
MATHEMATICS	4048/02
Paper 2	5 October 2021
Candidates answer on the Question Paper.	1 hour 30 minutes

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all the questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 60.

		FOR	EXAMINER '	S USE		
Q1	Q2	Q3	Q4	Q5	Q6	
						60

DO NOT TURN THE PAGE UNTIL YOU ARE TOLD TO DO SO.

This document consists of 15 printed pages.

Setter: Audrey Chong

Mathematical Formulae

Compound interest

Total amount =
$$P \left(1 + \frac{r}{100} \right)^n$$

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab \sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

Answer all the questions.

1 (a) Simplify $\frac{15bc^2}{12} \div \frac{75b^3}{4c^2}$.

Answer					•	•			•				•											•	•	•	•		•			•			•	[2]	
--------	--	--	--	--	---	---	--	--	---	--	--	--	---	--	--	--	--	--	--	--	--	--	--	---	---	---	---	--	---	--	--	---	--	--	---	----	---	--

(b) Express as a single fraction in its simplest form $\frac{7}{(2-x)^2} - \frac{4}{x-2}$.

Answer [2]

(c) Simplify
$$\frac{3d^2 + 5d - 2}{9d^2 - 1}$$
.

Answer [3]

(d) Solve the equation $32^{2x} = \frac{1}{8}$.

2	A swimming pool has a capacity of 4500 litres.
	Tap A can fill the swimming pool at a rate of x litres per minute.
	Tap B can fill the swimming pool at a rate of $(x-10)$ litres per minute.

(a) Write down an expression, in terms of x, for the number of minutes it would take to fill the swimming pool using tap A.

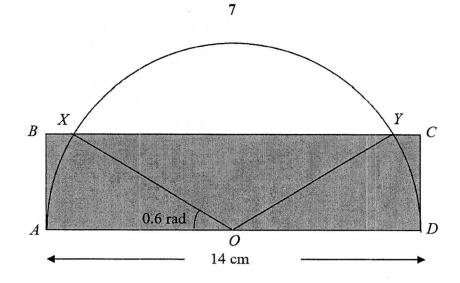
Answermin [1]

(b) Write down an expression, in terms of x, for the number of minutes it would take to fill the swimming pool using tap B.

Answermin [1]

(c) It takes 30 minutes longer to fill the swimming pool using tap B than it does using tap A.
 Write down an equation to represent this information and shows that it reduces to x²-10x-1500 = 0.

Answer


6		•		_	
^{6}T	11	1	TI	0	
J.	u	L			£. X.

(d) Solve the equation $x^2 - 10x - 1500 = 0$, giving your solutions correct to two decimal places.

- (e) Calculate how long it would take to fill the empty swimming pool using tap A and tap B together.
 - Give your answer in minutes and seconds, correct to the nearest ten seconds.

Answerminutesseconds [2]

3

ABCD is a rectangle and O is the midpoint of AD. A semicircle with diameter AD = 14 cm is drawn. The semicircle cuts the side BC at X and Y. Angle AOX = 0.6 radians.

Calculate

(a) the length of arc XY,

(b) the length CD,

Answer	 	 cm [2]
Answer	 	 cm [2]

(c) the unshaded area of the diagram.

Answer												2						0			3 8	2 200		cm^2	[3	
111101101	• •	• •	• •	•	• •	•	٠	•	• •	•	•	٠	•	•	•	•	•	•	•	•	•		•	CIII	10	l.

3.5 km

Puition

Island

North

2.8 km

5.3267 km

Jetty

A, B and C are 3 popular spots on the island. T represents the location of a jetty on the island. T is due south of B and it lies on the line joining A and C. AB = 2.8 km, BC = 3.5 km and AC = 5.3267 km. The bearing of B from A is 028° .

(a) Calculate angle ABC.

Answer[3]	4nswer		•	•	•		•						•		•		•		•				•	٠		٠	•	•	•	•		•					[3	3	
-----------	--------	--	---	---	---	--	---	--	--	--	--	--	---	--	---	--	---	--	---	--	--	--	---	---	--	---	---	---	---	---	--	---	--	--	--	--	----	---	--

(b)	Calculate	the	bearing	of	C	from A	4.
-----	-----------	-----	---------	----	---	--------	----

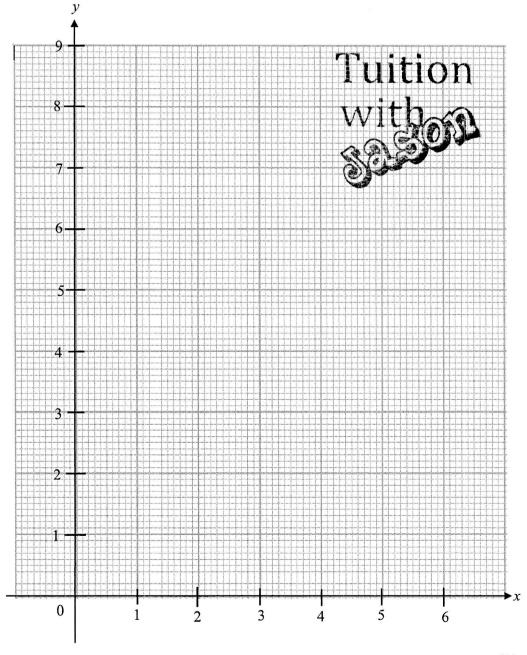
(c) Calculate the distance of T from A.

Answer km [2]

(d) A plane is 760 m vertically above A while a control tower stands at T.
 The control tower has a height of 90 m.
 The plane is able to view any object within 25° from its line of sight.

John commented that the plane will be able to see the control tower while at A. Do you agree? Explain your answer.

Answer


The variables x and y are connected by the equation $y = 2x + \frac{18}{x} - 11$. Some corresponding values of x and y are given in the table below.

x	1	1.5	2	3	4	5	6
y	9	4	2	1	р	2.6	4

(a) Find the value of p.

$$Answer p = \dots [1]$$

(b) On the grid, draw the graph of $y = 2x + \frac{18}{x} - 11$ for $1 \le x \le 6$.

BP~411	BF	> ~	41	11
--------	----	-----	----	----

(c) By drawing a tangent line, find the gradient of the curve at (2, 2).

(d) (i) On the grid in part (b), draw the line
$$y = \frac{1}{2}x + 1$$
 for $0 \le x \le 6$. [2]

(ii) Write down the x-coordinates of the points where this line intersects the curve.

Plan A

Plan B

Minimum deposit of \$3500.

For the first \$3500, customers get a flat rate of 0.08% simple interest per annum.

For subsequent amount, customers get a

Plan B

No minimum amount required.

Compound interest at a rate of x% per annum.

For subsequent amount, customers get a

new customers opening a deposit savings

(a) Grace deposited \$10 000 under Plan A.

flat rate of 0.92% simple interest per

XYZ bank offered two promotion plans f

6

annum.

Calculate the total amount in her account after four years.

Answer \$......[3]

(b) Wilson deposited \$10 000 under Plan B.
His total amount is the same as Grace's after four years.

Calculate the value of x.

 $Answer x = \dots [3]$

(c) Grace intends to deposit her money for 5 years. She claimed that Plan A is better than Plan B.

Do you agree with Grace's claim? Explain your answer.

Answer

To reward customers, XYZ Bank decided to launch an X-Miles Credit Card. The details of the X-Miles Credit Card are as follows:

- There is a welcome gift of 14 000 miles for new card holders.
- Customers need to pay a credit card fee of \$198.20 per year, from the second year onwards.
- When the credit card fee is paid, customers earn 8000 miles.
- Miles accumulated can be used to exchange for plane tickets with a one-time transaction fee of \$25.
- For every \$1 spent locally, customers earn 1.15 miles.

 This does not apply to the credit card fee and the one-time transaction fee.
- (d) A return plane ticket from Singapore to New York requires 120 000 miles for redemption. Wilson is applying for the credit card for the first time.

Calculate the minimum amount Wilson has to pay in total so that he can redeem the ticket 3 years after he has signed up.

Answer	\$																												Ţ.	4	1
211151101	Ψ	٠	٠.	•	٠	•	٠	•	•	•	•	•	٠	•	•	•	•	•	• •	•	•	•	•	•	•	٠	٠	•	L	٠	J

NORTHBROOKS SECONDARY SCHOOL MATHEMATICS DEPARTMENT 3 EXPRESS END-OF-YEAR EXAM 2021 PAPER 1

MARKING SCHEME

Qn 1	Answer	Marks	Remarks
1	58.3° or	B1	
	121.7°	B1	
	7	Total: 2 Marks	
2	$\left(\frac{h}{50}\right)^3 = \frac{1}{2}$	M1	
	$\frac{h^3}{125000} = \frac{1}{2}$		
	125000 2		
	$h^3 = \frac{1}{2} \times 125000$		
	2		
	h =		
	h = 39.6850		
	h = 39.7 cm	A1	
		Total: 2 Marks	
3	$(2x-4)^2 = 81$		
	$2x-4=\pm\sqrt{81}$	M1	
	$2x-4=\pm\sqrt{81}$ $2x-4=\pm9$	1011	
	$2x-4=\pm 9$ 2x-4=9 or $2x-4=-9$		
	9+4 0+4		
	$x = \frac{9+4}{2}$ or $x = \frac{-9+4}{2}$ x = 6.5 or $x = -2.5$ Tuition		
	x=65 or $x=-25$	A1 A1	
	" " " I ditioi	Total: 3 marks	
4	Let x be the number of \$10 note;		
	10x + 5(12 - x) < 95	M1	
	10x + 60 - 5x < 95	M1	
	5x + 60 < 95		
	5x < 95 - 60		
	$ \begin{array}{l} 5x < 35 \\ x < 7 \end{array} $	M1	
	He has a maximum 6 pieces of \$10 notes	Al	
	The same of process of the notes	Total: 4 marks	
5	$0 \le 3(1-2x)$ and $3(1-2x) < x+1$	M1	
	$0 \le 3 - 6x$ and $3 - 6x < x + 1$	The company of the control of the co	
	$3-6x \ge 0$ and $-6x-x < -3+1$		
	$-6x \ge -3$ and $-7x < -2$	M1	
	$x \le \frac{3}{6}$ and $x > \frac{2}{7}$		
	$\frac{\sqrt{3}}{6}$ and $\frac{\sqrt{7}}{7}$		
	$x \le \frac{1}{2}$ and $x > \frac{2}{7}$		
	, - ,		
	$\frac{2}{7} < x \le \frac{1}{2}$	A1	
	7 7 2	Total: 3 marks	

6a	6.963×10 ⁷ – 5 902 000	
Va		M1
	= 6 963 000 - 5 902 000	
	= 63 728 000	
	$=6.3728\times10^7$	A1
	$\frac{3.195 \times 10^7}{2.706 \times 10^8} \times 100\%$	M1
b	$\frac{2.706\times10^8}{2.706\times10^8}$	
	=11.807	
	=11.8%	A1
		Total: 4 marks
7a	Graph B	B1
b	Graph D	B1
c	Graph C	B1
d	Graph A	B1
0-		Total: 4 marks
8a	If we substitute x with 2	B1
8b	6x + 2y = 7	
	6(2) + 2y = 7	
	12 + 2y = 7	
	2y = 7 - 12	
	2y = -5	M1
	y = -2.5	1111
	Hence, coordinate (2, -3) does not lie on the	A1
	line.	Al
9.	y = mx + c	
8c	5 = (-3)(3) + c	M1
	5 = (-3)(3) + c 5 = -9 + c	- J **
	c = 14	M1
	y = -3x + 14	A1
0.1	Length of AB	111
8d	$\sqrt{(5-(-3))^2+(3-2)^2}$	M1
	1	
	$==\sqrt{64+1}$	
	= 8.06	Al
00		Total: 8 marks
9a	$\frac{v}{15} = 4.5$	M1
	$v = 4.5 \times 15$	
	v = 67.5 m/s	Al
9b	Let the speed at 71^{st} second be x	M1
	$\frac{x}{9} = \frac{67.5}{25}$	
	l .	
	$x = \frac{67.5}{25} \times 9$	
	x = 24.3 m/s	
	x - 24.3 III/8	

r		
	Full distance of travelling = $0.5 \times 67.5 \times (55 + 40) + 0.5 \times 16 \times (67.5 + 24.3)$	M1
	= 3940.65 <i>m</i>	
	=3.94065km	
	Disagree, as in 71 s, the particle can only cover a distance 3.94065km. Hence, a longer time is	A1
	required for the particle to cover a distance of 4km.	Total: 5 marks
10a	Area	
	$= \frac{1}{2} \times 11 \times 12 \times \sin 40$	M1
	= 42.4240	
	$= 42.4 \text{ cm}^2$	A1
10b	$BC^2 = 11^2 + 12^2 - 2(11)(12)\cos 40$	M1
	$BC = \sqrt{11^2 + 12^2 - 2(11)(12)\cos 40}$	
	BC = 7.9224	
	BC = 7.92 cm	A1
10c	$Area = \frac{1}{2} \times base \times height$	
	$42.4240 = \frac{1}{2} \times 7.9224 \times height$	M1
	$height = \frac{42.4240}{1.000}$	
	$height = \frac{42.4240}{\frac{1}{2} \times 7.9224}$	
	height = 10.7099	
	height = 10.7 cm	
	Hence, the perpendicular distance from A to BC is 10.7 cm.	A1
	BC is 10.7 cm.	Total: 6 marks
11a	$\frac{AB}{AB} = \frac{9}{2}$	
	\overline{BC} 6 $\angle BAC = \angle CBD$ ($\triangle ABC$ is an isosceles triangles	
	AC = 6	
	$\overline{BD} = \overline{4}$	B (2,1,0)
	$=\frac{3}{2}$	
	2	
	By SAS, $\triangle ABC$ is similar to $\triangle BCD$ $DC DB$	
b	$\frac{\overline{CB}}{CB} = \frac{\overline{CA}}{CA}$	
	$\frac{DC}{dt} = \frac{4}{3}$	
	6 6 DC - 4 cm	B1
	DC = 4 cm	

		M1	
	$\frac{\text{area of } \Delta ABC}{\text{area of } \Delta BCD} = \left(\frac{3}{2}\right)^2$	IVII	
	$\frac{1}{\text{area of }\Delta BCD} = \frac{1}{2}$		
c		A1	
	$\frac{\text{area of } \Delta ABC}{\text{area of } \Delta BCD} = \frac{9}{4}$		
d	area of $\triangle BCD = 4$	B1	
	$\frac{1}{\text{area of } \Delta ADC} = \frac{1}{5}$	Total: 6 marks	
12a	$x^2 - 3x - 2$		
	$=(x-\frac{3}{2})^{2}-\frac{9}{4}-2$ $=(x-\frac{3}{2})^{2}-\frac{17}{4}$ Tuition		
	$=(x-\frac{1}{2})^2-\frac{1}{4}$		
	3, 17 IUITION	B1, B1	
	$=(x-\frac{1}{2})^2-\frac{1}{4}$,	
12b	* WITD COV	B1 for the correct	
		curve	
		B1 for the correct label of x-intercepts	
		and y-intercept	
		,	
	4 2 0 2 7		
	2		
12c	$(\frac{3}{2}, \frac{17}{4})$	B1	
12d		B1	
12u	$x = \frac{3}{2}$		
	2	Total:6 marks	
13ai	8ª		
	$=(2^3)^a$		
	$= (2^3)^a$ $= (2^a)^3$	M1	
	$= 5^3$		
		A1	
	$\frac{=125}{2^{1-a}}$	M1	
13aii	1	1111	
	$= 2 \div 2^a$ $= \frac{2}{5} \text{ or } 0.4$		
	$-\frac{2}{3}$ or 0.4		
	5	A1	
13b	$\sqrt{7^x} = \frac{1}{343}$		
	343		M1 each for
	$7^{\frac{x}{2}} = 7^{-3}$ $\frac{x}{2} = -3$ $x = -6$	M1, M1	correct answer
	, -,		on LHS and
	$\frac{x}{2} = -3$		RHS
	x6	A1 Total: 7 marks	
1	1×0	Lotal: / marks	1

NORTHBROOKS SECONDARY SCHOOL MATHEMATICS DEPARTMENT 3 EXPRESS END-OF-YEAR EXAM 2021 PAPER 2

MARKING SCHEME

Qn	Answer	Marks	Remarks
1(a)	$\frac{15bc^2}{12} \div \frac{75b^3}{4c^2}$		
	$12 4c^2$		
	$= \frac{15bc^2}{12} \times \frac{4c^2}{75b^3}$	M1	
	$\begin{bmatrix} 12 & /5b^2 \\ c^4 & \end{bmatrix}$		
	$=\frac{c^4}{15b^2}$	A1	
1(b)	7 4		
	$ (2-x)^2 x-2$		
	$= \frac{7 + 4(2 - x)}{(2 - x)^2}$	M1	
	$=\frac{7+8-4x}{(2-x)^2}$		
	$=\frac{15-4x}{(2-x)^2}$	A1	**
	$-\frac{1}{(2-x)^2}$	AI	
	or		
	7 4		
	$\frac{7}{(2-x)^2} - \frac{4}{x-2}$		
	$= \frac{7}{(x-2)^2} - \frac{4(x-2)}{(x-2)^2}$		
		M1	
	$=\frac{7-4x+8}{(x-2)^2} Tuition$		
	$=\frac{15-4x}{(x-2)^2}$ With		
		A1	
1(c)	$\frac{3d^2 + 5d - 2}{9d^2 - 1}$		
			1 mark for factorising
	$=\frac{(3d-1)(d+2)}{(3d+1)(3d-1)}$	M1, M1	numerator, 1 mark for factorising
	d+2		denominator
	$=\frac{3d+1}{3d+1}$	A1	
1(d)	$= \frac{d+2}{3d+1}$ $32^{2x} = \frac{1}{8}$		
	8	M1, M1	
	$2^{10x} = 2^{-3}$ $10x = -3$ $x = -\frac{3}{10}$,	
	3		
	$x = -\frac{3}{10}$	A1	

2(0)	4500		
2(a)		B1	9
2(b)	x 4500		
_(~)	$\frac{1}{x-10}$	B1	
2(c)	$\frac{4500}{x-10} - \frac{4500}{x} = 30$	M1	
	$\frac{1}{x-10} - \frac{1}{x} = 30$	1111	
	$4500x - 4500(x - 10)_{-20}$		
	$\frac{4500x - 4500(x - 10)}{x(x - 10)} = 30$		
	4500x - 4500x + 45000 = 30x(x - 10)		
	$30x^2 - 300x - 45000 = 0$	M1	
	$x^2 - 10x - 1500 = 0 \text{ (shown)}$	A1	
2(d)	$-(-10) \pm \sqrt{(-10)^2 - 4(1)(-1500)}$	M1	
	$x = \frac{-(-10) \pm \sqrt{(-10)^2 - 4(1)(-1500)}}{2(1)}$		
	$=\frac{10\pm\sqrt{6100}}{2}$		
	=2		
	= 44.05 or -34.05	A1, A1	
2(e)	4500	M1	
	44.05 + (44.05 – 10)		
	$=\frac{4500}{100}$		
	78.1		
	= 57.618 min		
	=57 min 40 sec (nearest tens)	A1	
3(a)	Arc length XY		
	$=7(\pi-0.6-0.6)$	M1	
	≈13.6 cm	A1	
3(b)	$\sin 0.6 = \frac{CD}{D}$	M1	
, ,	$\sin 0.6 = \frac{1}{7}$		
	$CD = 7 \times \sin 0.6$		
	<i>CD</i> ≈ 3.95 cm	A 1	
3(c)	$\frac{\pi(7)^2}{2} - 2\left(\frac{1}{2} \times 7^2 \times 0.6\right) - \left[\frac{1}{2} \times 7^2 \times \sin(\pi - 1.2)\right]$	M1, M1	1
	$\left[\frac{1}{2}\right]^{-2}\left[\frac{1}{2}\right]^{-1}\left[\frac{1}{2}\right]^{-1}\left[\frac{1}{2}\right]^{-1}$,	1 mark for area of 2 sectors, 1 mark for
	$\approx 24.7 \text{ cm}^2$	A1	area of triangle
	or		1
	Tuition		
	$\frac{1}{2}(7)^{2}(\pi-0.6-0.6) - \frac{1}{2}(7)^{2} \sin(\pi-0.6-0.6) $ $\approx 24.7 \text{ cm}^{2}$ With	M1, M1	1 mark for area of
	² Tarith	1711, 1711	sector, 1 mark for
	≈ 24.7 cm²	A1	area of triangle

4(a)	$5.3267^2 = 3.5^2 + 2.8^2 - 2(3.5)(2.8)\cos\angle ABC$		
		M1	
	$\angle ABC = \cos^{-1}\left(\frac{5.3267^2 - 3.5^2 - 2.8^2}{-2(3.5)(2.8)}\right)$	M1	
	$\angle ABC = 115.001^{\circ}$		
	≈115.0°	A1	
	or		
	$5.3267^2 = 3.5^2 + 2.8^2 - 2(3.5)(2.8)\cos \angle ABC$	M1	
	$\angle ABC = \cos^{-1}\left(\frac{3.5^2 + 2.8^2 - 5.3267^2}{2(3.5)(2.8)}\right)$	M1	
	$\angle ABC = 115.001^{\circ}$		
	≈115.0°	A1	
4(b)	$(R4C - 200^{-1})[3.5^2 - 2.8^2 - 5.3267^2]$,	
	$\angle BAC = \cos^{-1} \left[\frac{3.5^2 - 2.8^2 - 5.3267^2}{-2(2.8)(5.3267)} \right]$	M1	
	= 36.548° Tuition Bearing of C from A = $28^{\circ}+36.548^{\circ}$		
		M1	
	=064.5° WIT	A1	
	or	3	
	$\frac{\sin \angle BAC}{3.5} = \frac{\sin 115.001^{\circ}}{5.3267}$		
	$\angle BAC = \sin^{-1} \left(\frac{\sin 115.001^{\circ}}{5.3267} \times 3.5 \right)$	M1	
	$\angle BAC = 36.5483 \text{ or } 180^{\circ} - 36.5483$		
	=143.4517° (rej)		
	Bearing of C from A		
	= 36.5483° + 28°	M1	
	= 064.5483°		
	≈ 064.5°	A1	
4(c)	$\frac{AT}{\sin 200} = \frac{2.8}{\sin 4ATR}$		
	$\sin 28^{\circ} \sin \angle ATB$ $AT \qquad 2.8$		
	$\frac{AT}{\sin 28^{\circ}} = \frac{2.8}{\sin(180^{\circ} - 36.548^{\circ} - 28^{\circ})}$	M1	
	$AT = \frac{2.8}{\sin 115.452^{\circ}} \times \sin 28^{\circ}$		
	=1.4558		
4(d)	$\approx 1.46 \text{ km}$ Let θ be the angle of depression of the control	A1	
7(0)	tower from the plane.		
		M1	
1			

			1
	$\theta = \tan^{-1} \left(\frac{760 - 90}{1455.8} \right)$ $= \tan^{-1} \left(\frac{670}{1455.8} \right)$	A1	A1- to agree with John and provide reasoning
	= 24.713° Yes, I agree with John. The angle of depression of the control tower from the plane is less than 25°, which means it is within the plane's line of sight.		·
5(a)	p=1.5	B1	
5(b)	(attached graph at the back) Points plotted correctly Smooth curve passing through all points	B2,1,0 B1	
5(c)	Tangent line drawn	B1	
	Gradient = -2.71 to -1.91	B1	
5(di)	x 1 3 6 y 1.5 2.5 4	В1	
	Straight line drawn	B1	
5(dii)	x = 2, x = 6	B1, B1	
6(a)	Interest after 4 years $= \frac{3500 \times 0.08 \times 4}{100} + \frac{6500 \times 0.92 \times 4}{100}$	M1, M1	
	= 11.20 + 239.20 = \$250.40 Total amount = \$10 000 + \$250.40 = \$10 250.40	A1	
6(b)	$10000 \left(1 + \frac{x}{100}\right)^4 = 10250.40$ $\left(1 + \frac{x}{100}\right)^4 = 1.02504$	M1	
	$1 + \frac{x}{100} = \sqrt[4]{1.02504}$ $\frac{x}{100} = \sqrt[4]{1.02504} - 1$ $x = 100(\sqrt[4]{1.02504} - 1)$	M1	
	x = 0.6202		
	≈ 0.620	A1	
6(c)	Interest for Plan A in the 5 th year $= \frac{3500 \times 0.08 \times 1}{100} + \frac{6500 \times 0.92 \times 1}{100}$	M1	
	= \$62.60 Interest for Plan B in the 5 th year = $10250.40 \left(1 + \frac{0.6202}{100}\right) - 10250.40$ = \$63.57 > \$62.60	M1	

			A1	
	No, I disagree with Grace as plar	n B will yield		
	more interest than Plan A.	Tuition		8
6(d)	Total amount spent locally	Tuluu		
	= Amount converted to miles + E	Extra fees		
	$=\frac{120000-14000-8000(2)}{12000000000000000000000000000000000000$	With	1 M1	
	1.15			
	+198.20(2) + 25		M1, M1	
	=\$78 260.869 + \$396.40 + \$50			
	=\$78 682.27 (2dp)		A1	